

Electrically operated expansion valves for CO₂ type AKVH 10

Electrically operated expansion valves for CO₂, type AKVH 10

Contents		Page
	Introduction	
	Features	3
	Approvals	3
	Technical data	4
	Rated capacity and Ordering	4
	Spare parts	
	Ordering, Coils for AKVH valves	6
	Capacity, R744	7
	Dimensioning	8
	Design	
	Function	
	Dimensions and weights	

Electrically operated expansion valves for CO2, type AKVH 10

Introduction

AKVH are electrically operated expansion valves designed for refrigerating plants using R744 refrigerant.

The AKVH valves are normally controlled by a controller from Danfoss' range of ADAP- KOOL® controllers.

The AKVH valves are supplied as a component programme, as follows:

- Separate valve
- Separate coil with terminal box or cable
- Spare parts in the form upper part, orifice and filter

The individual capacities are indicated with a number forming part of the type designation. The number represents the size of the orifice of the valve in question. A valve with orifice 3 will for example be designated AKVH 10-3. The orifice assembly is replaceable.

The AKVH 10 valves cover a capacity range from 0.4 kW to 11 kW in refrigeration applications and 0.8 kW to 22 kW in freezing applications.

Features

- For R744 refrigerant
- The valve requires no adjustment
- Wide regulation range

- Replaceable orifice assembly
- Both expansion valve and solenoid valve.
- Wide range of coils for d.c. and a.c.

Approvals

PED (97/23/EC A3.P3)

Electrically operated expansion valves for CO₂, type AKVH 10

Technical data

Valve type	AKVH 10
Tolerance of coil voltage	+10 / -15%
Enclosure to IEC 529	Max. IP 67
Working principle (Pulse-width modulation)	PWM
Recommended period of time	6 Seconds
Capacity (R744)	$R^{1)}$ 0.4 kW to 11 kW $F^{2)}$ 0.8 kW to 22 kW
Regulation range (Capacity range)	10 to 100%
Connection	Solder
Evaporating temperature	– 60 to 60°C
Ambient temperature	– 50 to 50°C
Leak of valve seat	<0.02% of k _v -value
MOPD	35 bar
Filter, replaceable	Internal 100 μm
Max. working pressure	AKVH10-0 to 6 PS = 90 barg ³⁾

¹⁾ Refrigeration

Rated capacity and Ordering

R744 AKVH 10											
Valve type	Rated cap	oacity kW	k _v value		Connections Solder ODF						
	D (;		2.0		ial pack es each	Single pack 1 valve each					
	Refrigeration	Freezing	m³/h	3/8 × 1/2 inch	10×12 mm	3/8 × 1/2 inch	10×12 mm				
AKVH 10-0	0.4	0.8	0.003	068F4068	068F4058	068F4078	068F4088				
AKVH 10-1	1.1	2.2	0.010	068F4069	068F4059	068F4079	068F4089				
AKVH 10-2	1.7	3.5	0.017	068F4070	068F4060	068F4080	068F4090				
AKVH 10-3	2.6	5.4	0.025	068F4071	068F4061	068F4081	068F4091				
AKVH 10-4	4.3	8.7	0.046	068F4072	068F4062	068F4082	068F4092				
AKVH 10-5	6.7	13.6	0.064	068F4073	068F4063	068F4083	068F4093				
AKVH 10-6	10.7	21.7	0.114	068F4074	068F4064	068F4084	068F4094				

²⁾ Freezing

^{3) 90} barg under stand still conditions but under normal operating conditions there must be liquid to the inlet of the valve.

Electrically operated expansion valves for CO2, type AKVH 10

Spare parts *AKVH 10*

Orifice

Orifice no.	Code no.	Contents
0	068F0722	
1	068F0723	
2	068F0724]
3	068F0725	1 pc. orifice 1 pc. gasket
4	068F0726	i pel gusket
5	068F0727	
6	068F0728	

Filter: Contents:

Code no. 068F0564 10 pcs. filters 10 pcs. gaskets

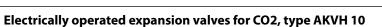
Upper part: **Code no. 068F0565** Contents: 1 pc. armature ass.

1 pc. armature tube 1 pc. gasket

Gasket for upper part: Contents:

Code no. 068F0549

25 pcs.gaskets



Electrically operated expansion valves for CO₂, type AKVH 10

Ordering *Coils for AKVH valves*

		18	bar	35 bar ³⁾		
		AKVH	AKVH	AKVH	AKVH	
		10-1 10-2 10-3 10-4 10-5	10-6	10-0 10-1 10-2 10-3 10-4 10-5	10-6	
D.C. coils	Code no.					
220 V d.c. 20 W, standard						
with terminal box	018F6851	+	+	+	+	
100 V d.c. 18 W, special with terminal box with DIN plugs	018F6780	+	+	+	-	
230 V d.c. 18 W, special with terminal box with DIN plugs	018F6781 ¹⁾ 018F6991 ¹⁾	+	+	+	-	
230 V d.c. 18 W, special with 2.5 m cable with 4.0 m cable with 8.0 m cable	018F6288 ¹⁾ 018F6278 ¹⁾ 018F6279 ¹⁾	+	+	+	-	
1) Recommended for commercial refrigerat	tion plant					
A.C. coils	Code no.					
240 V a.c. 10 W, 50 Hz with terminal box with DIN plugs	018F6702 018F6177	+	+	-	-	
240 V a.c. 10 W, 60 Hz with terminal box with DIN plugs	018F6713 018F6188	+	+	_	-	
240 V a.c. 12 W, 50 Hz with terminal box	018F6802	+	+	+	-	
230 V a.c. 10 W, 50 Hz with terminal box with DIN-plugs	018F6701 018F6176	+	+	-	-	
230 V a.c. 10 W, 60 Hz with terminal box with DIN-plugs	018F6714 018F6189	+	+	-	-	
230 V a.c. 10 W, 50/60 Hz with terminal box with DIN-plugs	018F6732 018F6193	+	+	-	-	
230 V a.c. 12 W, 50 Hz with terminal box	018F6801	+	+	+	-	
115 V a.c. 10 W, 50 Hz with terminal box with DIN-plugs	018F6711 018F6186	+	+	-	-	
115 V a.c. 10 W, 60 Hz with terminal box with DIN-plugs	018F6710 018F6185	+	+	-	-	
110 V a.c. 12 W, 50 Hz with terminal box	018F6811	+	+	+	-	
110 V a.c. 12 W, 60 Hz with terminal box	018F6813	+	+	_	-	
24 V a.c. 10 W, 50 Hz with terminal box with DIN-plugs	018F6707 018F6182	+	-	-	-	
24 V a.c. 12 W, 50 Hz with terminal box	018F6807	+	-	-	-	
24 V a.c. 12 W, 60 Hz with terminal box	018F6815	+	_	-	-	
24 V a.c. 20 W, 50 Hz with terminal box	018F6901 ²⁾	+	+	+	+	
24 V a.c. 20 W, 60 Hz with terminal box	018F6902 ²⁾	+	+	+	+	

 $[\]stackrel{2)}{3}$ 20 W coils can not be connected to AKC 24P2 and AKC 24W2 $\stackrel{3)}{3}$ If operated consistently at or near MOPD, the service interval will decrease.

Danfoss

Capacity

Technical brochure

R744

Valve type	Capacity in kW at pressure drop across valve Δp bar 1)											
	2	4	6	8	10	12	14	16	18			
AKVH 10 - 0	0.33	0.44	0.53	0.59	0.65	0.70	0.73	0.76	0.78			
AKVH 10 - 1	0.9	1.2	1.5	1.6	1.8	1.9	2.0	2.1	2.1			
AKVH 10 - 2	1.4	2.0	2.3	2.6	2.8	3.1	3.2	3.3	3.4			
AKVH 10 - 3	2.2	3.1	3.7	4.1	4.4	4.8	5.0	5.2	5.4			
AKVH 10 - 4	3.6	4.9	5.8	6.5	7.1	7.7	8.0	8.3	8.5			
AKVH 10 - 5	5.6	7.7	9.2	10.2	11.1	12.0	12.6	13.0	13.5			
AKVH 10 - 6	9.0	12.3	14.6	16.3	17.6	19.1	20.0	20.8	21.5			

Valve type	Capacity i	Capacity in kW at pressure drop across valve Δp bar											
	20	22	24	26	28	30	32	34	35				
AKVH 10 - 0	0.80	0.81	0.82	0.84	0.85	0.85	0.86	0.87	0.87				
AKVH 10 - 1	2.2	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4				
AKVH 10 - 2	3.5	3.6	3.7	3.7	3.8	3.8	3.8	3.8	3.8				
AKVH 10 - 3	5.5	5.6	5.7	5.8	5.9	5.9	6.0	6.0	6.0				
AKVH 10 - 4	8.8	8.9	9.1	9.3	9.4	9.5	9.5	9.6	9.6				
AKVH 10 - 5	13.8	14.1	14.4	14.6	14.8	14.9	15.0	15.0	15.0				
AKVH 10 - 6	22.0	22.4	22.9	23.3	23.5	23.7	23.9	23.9	24.0				

¹⁾ Rated capacitities are based on Subcooling tsub = 4K Evaporating temperature te = -25°C Superheating tsup = 5K

Electrically operated expansion valves for CO₂, type AKVH 10

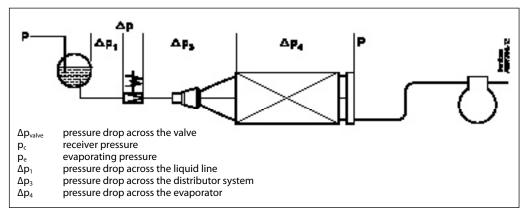
Dimensioning

To obtain an expansion valve that will function correctly under different load conditions it is necessary to consider the following points when the valve has to be dimensioned:

These points must be dealt with in the following sequence:

- 1) Evaporator capacity
- 2) Pressure drop across the valve
- 3) Correction for subcooling
- 4) Correction for evaporating temperature
- 5) Determination of valve size
- 6) Correctly dimensioned liquid line

1) Evaporator capacity


The evaporator capacity is found in the specifications from the evaporator supplier.

2) Pressure drop across the valve

The pressure drop across the valve directly determines the capacity and must therefore be considered.

The pressure drop across the valve is normally calculated as the receiver pressure less the evaporating pressure and sundry other pressure drops in the liquid line, distributor, evaporator, etc. It is indicated in the following formula:

$$\Delta p_{\text{valve}} = p_c - (p_e + \Delta p_1 + \Delta p_3 + \Delta p_4)$$

Note! The pressure drop across the liquid line and the distributor system must be calculated on the basis of the valve's max. capacity, as the valve operates with pulse-width modulation.

Example of calculation of pressure drop across a valve:

Refrigerant: R744

 p_c = Receiver pressure: 40 barg (at 6°C) Evaporating temperature: -5°C (p_e = 29.4 barg)

 $\Delta p_1 = 0.2 \text{ bar}$ $\Delta p_3 = 0.8 \text{ bar}$ $\Delta p_4 = 0.1 \text{ bar}$ This will give you the following equation:

$$\begin{array}{ll} \Delta p_{valve} &= p_c - (p_e + \Delta p_1 + \Delta p_3 + \Delta p_4) \\ &= 40 - (29.4 + 0.2 + 0.8 + 0.1) \\ &= 9.5 \; bar \end{array}$$

The found value for "pressure drop across the valve" is used later in the section "Determination of valve size".

Electrically operated expansion valves for CO2, type AKVH 10

Dimensioning (continued)

3) Correction for subcooling The evaporator capacity used must be corrected, if the subcooling deviates from 4 K. Use the actual correction factor indicated in the table.

Multiply the evaporator capacity by the correction factor to obtain the corrected capacity.

Correction factors for subcooling Δt_{sub}

Correction factor	4 K	10 K	15 K	20 K	25 K	30 K	35 K	40 K	45 K	50 K
R744	1.00	0.91	0.86	0.81	0.77	0.73	0.69	0.66	0.63	0.60

Corrected capacity = evaporator capacity x correction factor.

The corrected capacity is used in the section "Determination of valve size".

Correction factor according to the table = 0.91Corrected capacity = $5 \times 0.91 = 4.55$ kW.

Example of corection: Refrigerant: R744

Evaporator capacity Qe: 5 kW

Subcooling: 10 K

Note: Too little subcooling may cause flash gas.

4) Correction for transient conditions and evaporating temperature (t_e)

To obtain a correctly dimensioned valve it is important that the application is considered. Depending on the application, the valve should have an overcapacity enabling it to cope with the extra amount of refrigeration needed during certain periods, e.g. during the defrost recovery process.

The valve's opening degree should therefore be between 50 and 75% when regulating. In this way it is ensured that the valve has a sufficiently wide regulation range, so that it can manage changed loads at or near the normal working point.

The change in capacity as an effect of the deviation in refrigerant density is included in this correction factor.

Correction factor for transient conditions and evaporating temperature (t_e)

Evaporating temperature t _e °C	10 to -50
AKVH 10	1.6

5) Determination of valve size

When the valve size meeting the required capacity is selected it is important to note that the capacity indications are the valve's rated capacity, i.e. when the valve is 100% open. In this section we tell you how the valve's size is determined

There are three factors that have an influence on the choice of the valve:

- the pressure drop across the valve
- the corrected evaporator (correction for subcooling)
- the corrected capacity for evaporating temperature

The three factors have been described earlier in this section on dimensioning. When these three factors have been established, the selection of the valve can be made:

- First you multiply the "corrected capacity" by a value stated in the table.
- Use the new value in the capacity table in combination with the pressure drop value.
- Now select the valve size.

Example of selection of valve

Use as starting point the two earlier mentioned examples, where the following two values have been obtained:

 $\Delta p_{\text{valve}} = 9.5 \text{ bar}$

 $Q_{e \text{ corrected}} = 4.55 \text{ kW}$

The valve should be used in a coldroom. 1.6 is the "correction factor for the evaporating temperature".

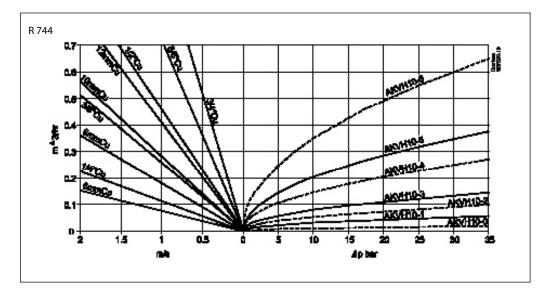
The dimensioned capacity will then be: $1.6 \times 4.55 \text{ kW} = 7.28 \text{ kW}.$

Now select a valve size from one of the capacity

With the given values $\Delta p_{valve} = 9.5$ bar and a capacity of 7.28 kW, select the valve size for AKVH 10-5.

This valve has a capacity of approx. 10.2 kW

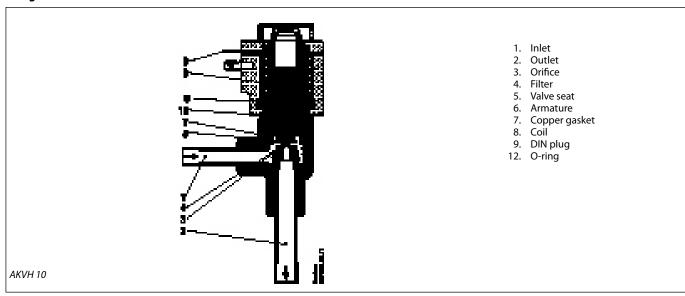
Electrically operated expansion valves for CO₂, type AKVH 10


Dimensioning (continued)

6) Correctly dimensioned liquid line
To obtain a correct supply of liquid to the AKVH
valve, the liquid line to the individual AKVH
valve must be correctly dimensioned.

The liquid flow rate should not exceed 1 m/sec.

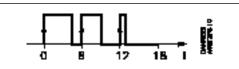
This must be observed on account of the pressure drop in the liquid line (lack of subcooling) and pulsations in the liquid line.


Dimensioning of the liquid line <u>must be based on the capacity of the valve at the pressure drop</u> with which it is operating (cf. capacity table), and not on the evaporator's capacity.

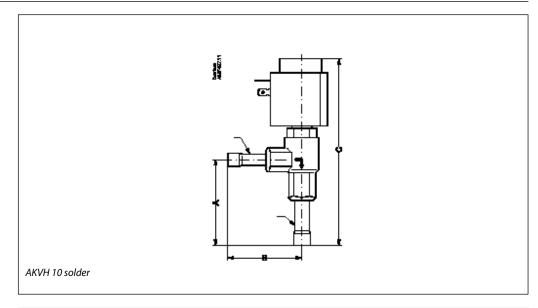
Electrically operated expansion valves for CO2, type AKVH 10

Design

Electrically operated expansion valves for CO₂, type AKVH 10


Function

The valve capacity is regulated by means of pulse-width modulation. Within a period of six seconds a voltage signal from the controller will be transmitted to and removed from the valve coil. This makes the valve open and close for the flow of refrigerant.


The relation between this opening and closing time indicates the actual capacity. If there is an intense need for refrigeration, the valve will remain open for almost all six seconds of the period. If the required amount of refrigeration is modest, the

valve will only stay open during a fraction of the period. The amount of refrigeration needed is determined by the controller.

When no refrigeration is required, the valve will remain closed and thus function as a solenoid valve.

Dimensions and weights

Valve type	Connection type	n	Α	S	С	Inlet		Outlet		Weight without coil	
	,,	7.		mm	mm	mm	inch	mm	inch	mm	kg
AKVH 10-n	Solder	0, 1, 2, 3, 4, 5, 6	75	67	154	3 8	10	1/2	12	0.38	